Клеточный цикл

Раздел посвящённый важнейшему процессу в жизни каждой клетки - клеточному циклу

Контроль клеточного цикла

Участники контроля клеточного цикла

Контрольные точки клеточного цикла

Контроль различных этапов клеточного цикла

Циклин-зависимые киназы

Циклины

Субстраты циклинов

APC комплекс

Ингибиторы комплексов Cdk-циклин

Участники контроля клеточного цикла

Клеточный цикл контролируется путем взаимодействия трех типов
белков: циклинзависимые киназы (Cdk), циклины
- белки, взаимодействующие с Cdk c образованием комплексов
и ингибиторы комплексов Cdk-циклин.

Циклинзависимые киназы (Cdk) - ферменты фосфорилирующие другие
белки, изменяют их функцию. Клеточный цикл контролируется изменением
активности Cdk, которая регулируется периодическим образованием
и распадом их регуляторных субъединиц - циклинов. Смена синтезов
и разрушений различных циклинов обеспечивает переходы и протекания
различных фаз клеточного цикла. При этом концентрация Cdk
постоянна в течении всего клеточного цикла. В разные фазы
клеточного цикла образуются разные циклины, которые связываясь
с Cdk образуют различные Cdk-циклиновые комплексы. Эти комплексы
регулируют разные фазы клеточного цикла и поэтому называются
G1-, G1/S- , S- и М-Cdk (рис.1).



рис.1 Концентрации различных комплексов Cdk-циклин
в клеточном цикле.

Контрольные точки клеточного цикла

1. Точка выхода из G1-фазы, называемая
Старт - у млекопитающих и точкой рестрикции
у дрожжей. После перехода через точку рестрикции R в конце
G1 наступление S становится необратимым, т.е. запускаются
процессы ведущие к следующему делению клетки.
2.
Точка S – проверка точности репликации.
3.
Точка G2/M-перехода – проверка завершения репликации.

4. Переход от метафазы к анафазе митоза.

Контроль различных этапов клеточного
цикла


ARC подавляет S- и M-циклины и не подавляет G1/S-циклины.

В G1-фазе работают различные ингибиторы Cdk.

Внутренние и внешнии сигналы приводят к образованию G1/S-
и S-циклинов и активации G1/S–Cdks.

Активность G1/S–Cdk увеличивается потому что G1/S циклины
не атакуются APC и потому что G1

Cdk ингибиторы так же не действуют на G1/S–Cdks
(у мух и дрожжей) или удаляются от G1/S–Cdks другими
механизмами (у млекопитающих).

S-Cdk инактивирует ингибиторы Cdk и подавляет ARC, которые
в G1-фазе подавляли S-Cdk. S-Cdk фосфорилируют
различные белки, что ведет к началу дупликации ДНК и S-фазы.
После начала S-фазы S/G1-Cdk обеспечивают собственную
инактивацию.

В конце S-фазы, в G2-фазе начинают накапливаться
М-Cdk, приводящая к вступлению клетки в митоз. М-Cdk активирует
ARC-комплекс, управляющий метафазно-анафазным переходом. Основная
функция ARC-комплекса состоит в разрушении когезинов, приводящее
к началу расхождения хромосом

Циклин зависимые киназы Cdk1-5 в клетках млекопитающих

Cdks активируется при связывании с циклинами (так же как фосфориляция
и дефосфориляция киназ). Cdks-фосфорилируют белки участвующие
в кл цикле

M-phase Cdk (M-Cdk) запускают каскад белковых фосфориляций,
запускающих М-фазу к.ц. (конденсация хромосом, разрушение
ядра, перестройка АГ иЭР, потеря адгезии с большинством других
клеток и внеклеточному матриксу, реорганизация цитоскелета)

anaphase-promoting complex (APC) регулятор митоза – инициация
разделения и расхождения хромосом и инактивация М-Cdk в конце
митоза

При выходе из G0 под действием факторов роста начинает
синтезироваться Cdk2-циклинD: распознает в-ва, регулирующие
ферменты синтеза белков, необходимых для репликации ДНК. В
это же время выявляются Cdk4-циклинD, и Cdk5циклинD

циклин-cdks
запускает М-стадию кц, деградация циклина снижает активность
cdks

Cdk2-циклинE появляется в G1 и достигает max
на границе G1-S, после чего его концентрация
резко снижается

Cdk2-циклинА появляется в промежутке G1-S и присутствует
в высокой концентрации на протяжении S

Сdk2-циклинB в конце G2 до М – резко разрушается

в каждой стадии синтезируются свои циклины M-циклины запускают
события митоза, G1/S-циклины – связывают цзк
в конце G1 подготавливает кл к S-фазе, S-циклины
– связывают цзк, запуская репликацию, G1-циклины
обеспечивают прохождение через точку рестрикции.

Регуляция репликации

Перед началом репликации Sc ORC-комплекс (origin recognition
complex) садится на ori - точку начала репликации. Cdc6 представлен
во всем клеточном цикле, но его концентрация возрастает вначале
G1, где он связывается c ОRC комплексом, к которому затем
присоединяются Mcm белки с образованием pre-replicative complex
(pre-RC). После сборки pre-RC клетка готова к репликации.

Для инициации репликации S-Cdk соединяется с протеинкиназой
(?), которая фосфорилирует pre-RC. При этом Cdc6 диссоциирует
от ОRC после начала репликации и фосфорилируется, после чего
убиквитинируется SCF и деградирует. Изменения в pre-RC препятствуют
повторному запуску репликации. S-Cdk так же фосфорилирует
некоторые Mcm белковые комплексы, что запускает их экспорт
из ядра. Последующая дефосфориляция белков вновь запустит
процесс образования pre-RC.



Регуляция митоза

В эмбриональных клетках синтез М-циклина постоянен во всем
клеточном цикле и накопление его происходит из-за уменьшения
деградации. У большинства клеток М-циклин синтезируется во
время G2 и М-фаз. Накопление циклина ведет к накоплению M-Cdk.
Cdk ингибируется, фосфорилируясь протеинкиназой Wee1. Активация
Cdc25 в поздней G2 дефосфорилирует M-Cdk, так же происходит
репрессия Wee1. Две протеинкиназы фосфорилируют Cdc25 – Polo
kinase и M-Cdk. M-Cdk так же фосфорилирует и ингибирует Wee1.
Способность M-Cdk активировать свой собственный активатор
(Cdc25) и ингибировать свой собственный ингибитор (Wee1) предполагает,
что активация M-Cdk в митозе резко усиливается при наличии
такой позитивной обратной связи. Малое количество активированных
Cdc25 активируют M-Cdk, которые активирует еще больше Cdc25
и супрессируют Wee1. Это приводит к большей дефосфориляции
M-Cdk и активации и тд. Такой механизм обеспечивает полную
активацию всех M-Cdk

Фосфорилирование ламинов M-Cdk приводит к их деградации. М-Cdk
фосфорилирует несколько субъединиц конденсинов, запуская конденсацию
хромосом.

M-Cdk фосфорилирует различные белки, запуская реорганизацию
микротрубочек и другие события ведущие к организации веретена
деления.




Циклин-зависимые
киназы

вид название синоним размер функция
S.cerevisiae Cdk1 Cdc28 298 все стадии клеточного цикла
S.pombe Cdk1 Cdc2 297 все стадии клеточного цикла
D.melanogaster

Cdk1

Cdk2

Cdk4

Cdc2

Cdc2c

Cdk4/6
297

314

317
M

G1/S, S, возможно М

G1 обеспечивает рост
X.laevis Cdk1

Cdk2
Cdc2
 
301

297
M

S, возможно S
H.sapiens Cdk1

Cdk2

Cdk4

Cdk6
Cdc2
 
 
 
297

298

303

326
M

G1/S, S, возможно М

G1

G1

В животных клетках имеются, по крайней мере, 7 различных
Cdk. Cdk1,2,4,6 напрямую участвуют в регуляции клеточного
цикла, тогда как остальные фосфорилируют другие Cdk и называются
Cdk-активирующие киназы (CAK).

Cdk7,8,9 являются регуляторами РНК полимеразы II. Cdk5 участвует
в дифференцировке нервных клеток.

У дрожжей Sc и Sp все события клеточного цикла контролируются
одной Cdk1. У многоклеточных организмов события контролируются
Cdk1 и Cdk2. Также у высших эукариот имеются Cdk4 и Cdk6
которые регулируют клеточный цикл в ответ на внеклеточные
сигналы.

Cdk фосфорилируют сотни различных белков по сериновым (S)
или треониновым (T) аминокислотным остаткам. Cdk узнает
мотиф другого белка по которому необходимо фосфорилировать:
[S/T*]PX[K/R], где S/T*- место фосфорилирования, X – любая
аминокислота, K/R-основные аминокислоты лизин (K) или аргинин
(R).

В отсутствии циклина активный центр Cdk заблокирован.

Cdk состоит из нескольких доменов: Т-петля (инактивирующая
петля) – закрывает активный центр в отсутствии циклина.
L12 helix, PSTAIRE helix.

Циклины

Вид G1 G1/S S M
S.cerevisiae Cln3

(Cdk1)
Cln1,2

(Cdk1)
Clb5,6

(Cdk1)
Clb1,2,3,4

(Cdk1)
S.pombe Puc1?

(Cdk1)
Puc1

Cig1?,

(Cdk1)
Cig2,

Cig1?

(Cdk1)
Cdc13

(Cdk1)
D.melanogaster cyclin D

(Cdk4)
cyclin E

(Cdk2)
cyclin E, A

(Cdk2,1)
cyclin A, B, B3

(Cdk1)
X.laevis   cyclin E

(Cdk2)
cyclin E, A

(Cdk2,1)
cyclin A, B

(Cdk1)
H.sapiens cyclin D1,2,3

(Cdk4,6)
cyclin E

(Cdk2)
cyclin A

(Cdk2,1)
cyclin B

(Cdk1)

Циклины - цитоплазматические белки. Разрушение циклинов
происходит в протеосомах (см. обзор Протеасомы). Циклин
B – белок киназный домен, регуляторная субъединица. Начинает
синтезироваться в G1, достигает max в S и ранней профазе
и быстро разрушается в начале анафазы М. Когда концентрация
регуляторной субъединицы возрастает – активируется киназный
домен. Фосфорилирование специфических белков приводит к
компактизации х-м, разрушению ядерной об-ки и сборке веретена.

Циклин разрушается в протеасомах. Сигнальная послед-ть из
8-10 а-кт –блок разрушения - узнается распознающим белком,
убиквитинлигаза присоединиет убиквитин (76а-кт) к остаткам
лизина, который полиUb и узнается РНК-белковым комплексом
протеасомой. Фосфатаза переводит распознающий белок в неактивное
состояние, а циклин фосфорилирует переводя в активное ?чем
больше циклина, тем быстрее он разрушается.

Циклин фосфорилирует сериновые и треониновые остатки ламинов
вызывая их деполимеризацию, фосфорилирует гистон H1, участвует
в фосфорилировании блокирующим везикулярный транспорт –
разрушение ЭПР и АГ, фосфорилирует участок легкой цепи миозина,
ингибируя АТФ-азную активность и связывание с F-актином
– блокировка цитокинеза в раннем митозе. После разрушения
циклина белки дефосфорилируются.

Циклины – активаторы Cdk. Циклины, так же как и Cdk вовлечены
в различные, помимо контроля клеточного цикла, процессы.
Циклины разделяются на 4 класса в зависимости от времени
действия в клеточном цикле: G1/S, S, M и G1 циклины.

G1/S циклины (Cln1 и Cln2 у S. cerevisiae, циклин E у позвоночных)
достигает максимальной концентрации в поздней G1-фазе и
падает в S-фазе.

G1/S cyclin–Cdk комплекс запускает начало репликации ДНК
выключая различные системы подавляющие S-phase Cdk в G1-фазе

G1/S циклины также инициируют дупликацию центросом у позвоночных,
образование веретенного тела у дрожжей. Падение уровня G1/S
сопровождается увеличением концентрации S циклинов (Clb5,
Clb6 у Sc и циклин A у позвоночных), который образует S
циклин-Cdk комплекс который напрямую стимулирует ДНК репликацию.
Уровень S циклина остается высоким в течении всей S, G2-фаз
и начала митоза, где помогает началу митозу в некоторых
клетках.

М-циклины (Clb1,2,3 и 4 у Sc, циклин B у позвоночных) появляется
последним. Его концентрация увеличивается, когда клетка
переходит к митозу и достигает максимума в метафазе. М-циклин-Cdk-комплекс
включает сборку веретена деления и выравнивание сестринских
хроматид. Его разрушение в анафазе приводит к выходу из
митоза и цитокиезу.

G1 циклины (Cln3 у Sc и циклин D у позвоночных) помогает
координировать клеточный рост с входом в новый клеточный
цикл. Они необычны, так как их концентрация не меняется
от фазы клеточного цикла, а меняется в ответ на внешние
регуляторные сигналы роста.

APC комплекс (Anaphase-Promoting Complex)


Убиквитин лигаза митоза - APC состоит из 12 субъединиц и регулирует
различные процессы митоза, такие как разделение сестринских
хроматид (запускает разрушение когезинов), переход к анафазе,
анафазное расхождение хромосом, выход из митоза, разрешение
S-фазы. ARC разрушает митотический циклин B.

Имеются различные белки регулирующие активность ARC комплекса,
такие как Mps1, Bub1, Bub3, BubR1, Mad1 и Mad2. Они ингибируют
ARC комплекс, что ведет к остановке клеточного цикла в метафазе
митоза.

 

Ингибиторы комплексов циклин-Cdk

Вид Название Синонимы Гомологи Цели, функции
S. cerevisiae Sic1

Far1


Rum1

нет
ингибирует S- и M-Cdk, подавляет активность Cdk в
G1

ингибирует G1/S–Cdk в ответ на феромоны
S. pombe Rum1
Sic1 ингибирует S– и М–Cdks, подавляет активность Cdk
в G1
D. melanogaster Roughex/Rux

Dacapo/Dap


нет

Cip/Kip
ингибирует S– и M–Cdk, подавляет активность Cdk in
G1

ингибирует G1/S–Cdks, подавляет активность Cdk в G1
X. laevis Xic1 Kix1 Cip/Kip ингибирует G1/S– и S–Cdk
H. sapiens p21

p27

p57

p15INK4b

p16INK4a

p18INK4c

p19INK4d
Cip1/Waf1

Kip1

Kip2

-

-

-

-
Cip/Kip

Cip/Kip i

Cip/Kip

INK4

INK4

INK4

INK4
ингибирует G1/S– и S–Cdk, активирует cyclin D–Cdk4

ингибирует G1/S– и S–Cdks, активирует cyclin D–Cdk4

ингибирует G1/S– и S–Cdks, активирует cyclin D–Cdk4

ингибирует Cdk4, Cdk6

ингибирует Cdk4, Cdk6

ингибирует Cdk4, Cdk6

ингибирует Cdk4, Cdk6

Помимо циклинов имеются и другие регуляторы, такие как
p27, p53, анафазный ингибитор, Cdc20, polo-like киназа,
aurora киназа, Nek2 киназа и кинезинзависимые моторные белки.

p53 (опухолевый супрессор) - нестабильный
белок, узнает поврежденную ДНК, стабилизируется, накапливается
и стимулирует синтез ингибитора Cdk2. Нарушения в работе
p53 приводят к развитию раковых заболеваний.

p21 семейство - белки содержащие гомологичные
N-концевые участки, взаимодействующие с Cdk-циклинами. Активируются
в стареющих клетках. Образование индуцируется опухолевым
супрессором p53. Может блокировать субъединицы ДНК-полимеразы

p27 - межклеточные контакты стимулируют
его синтез - контактное подавление клеточного роста – задержка
в G0. Когда фибробласты помещаются в чашку они
начинают делиться пока монослой не покроет чашку – контактное
торможение. В опытах показано что существенную роль играют
не контакты, а степень распластывания – чем меньше распластана
клетка, тем больше времени занимает клеточный цикл. Округление
клеток сопровождается снижением общей интенсивности белкового
синтеза.

p57

p15, p16 семейство: взаимодействуют
с Cdk4 и Cdk6. Нарушают связь с циклинами D. Вероятно, задерживают
рост клеток.

Сокращения:

cdc-гены (cell-division-cycle genes) - гены клеточного цикла.

Мейоз

Основные события мейоза
Продолжительность мейоза
Премейотическая интерфаза
Профаза I
Лептотена
Зиготена
Пахитена
Диплотена
Диакинез
Метафаза I
Анафаза
Телофаза
Интеркинез
Второе деление мейоза
Гаметогенез

Основные события мейоза
Мейоз – тип митоза, или редукционное деление, при котором из одной клетки образуется четыре, каждая из которых имеет вдвое меньше хромосом чем исходная; т.е. число хромосом уменьшается с диплоидного (2n) до гаплоидного (n). Мейоз происходит при образовании гамет - гаметный, при образовании спор - споровый и мейоз может быть зиготным. Смысл гаметного мейоза сводится к образованию половых клеток, при слиянии которых, восстанавливается число хромосом (до диплоидного) характерное для соматических клеток данного вида. Споровый тип мейоза происходит у растений для которых характерно чередование поколений - гаплоидного, размножающегося бесполым путем и диплоидного, размножающегося половым путем (см. обзор Размножение).

рис.1 Принципиальная схема мейоза. В соматических диплоидных клетках содержат две гомологичные хромосомы, одна отцовская и одна материнская. Они удваиваются в S-фазе клеточного цикла, образуя две пары сестринских хроматид. Хромосомы сближаются и между ними происходит кроссинговер - обмен участками между материнской и отцовской парами хроматид с образованием хроматид содержащих отцовские и материнские гены. Хромосомы конденсируются, выстраиваются и расходятся. Затем происходит второе деление мейоза.Стадии мейоза 2n-->S-->4n-->2x2n-->4x1n
Мультипликация, демонстрирующая основные события мейоза: meiosis.mpg [2,65 Mb]

Мейоз разделяют на ряд стадий, которые можно различить в световой микроскоп.
Первое деление мейоза
Профаза I мейоза разделяетя на ряд стадий.
лептотена (стадия тонких нитей) начинается спирализация х-м
зиготена (стадия сливающихся нитей),сближение и начало конъюгации гомологичных х-м, кот объединяются в бивалент
пахитена (стадия толстых нитей) м-у гомологичными х-мами осуществляется кроссинговер
диплотена (стадия двойных нитей) отталкивание гомологичных х-м, кот отделяются др от др в области центромер, но остаются связанными в областях прошедшего кроссинговера – хиазмах
диакинез (стадия обособления двойных нитей) гомологичные х-мы удерживаются в месте лишь в отдельных точках хиазм – уменьшение числа хиазм, компактность бивалентов
Метафаза I - завершается формирование веретена деления, его нити прикрепляются к центромерам хромосом, в результате чего биваленты устанавливаются в плоскости экватора веретена деления, образуя экваториальную пластинку.
Анафаза I - связи в бивалентах ослабляются и гомологичные хромосомы отходят друг от друга, направляясь к противоположным полюсам веретена деления. К каждому полюсу подходит гаплоидный набор хромосом, состоящий из двух хроматид.
Телофаза I - у полюсов веретена деления собирается одинарный гаплоидный набор хромосом, каждая из них содержит удвоенное количество ДНК (n2c).
Интеркинез - временной промежуток между первым и вторым делениями мейоза. Не всегда обязателен.
Второе мейотическое отделение (эквационное) протекает как митоз, только клетки, вступающие в него, несут гаплоидный набор хромосом.

ПРОДОЛЖИТЕЛЬНОСТЬ МЕЙОЗА
Продолжительность мейоза напрямую зависит от количества ДНК в ядре. Также продолжительность мейоза зависит от структуры хромосомной организации и особенностей данного вида.

Вид 2n Время, ч ДНК на клетку (пг)
Antirrhinum majus 16 24.0 5.5
Haploppapus gracilis 4 36.0 5.5
Secale cereale 14 51.2 28.7
Allium cepa 16 96.0 54.0
Tradescantia paludosa 12 126.0 59.0
Tulbaghia violacea 12 130.0 58.5
Lilium henryi 24 170.0 100.0
Lilium longiflorum 24 192.0 106.0
Trillium erectum 10 274.0 120.0

ПРЕМЕЙОТИЧЕСКАЯ ИНТЕРФАЗА

ПРОФАЗА I

Лептотена
(стадия тонких нитей) начинается спирализация х-м

Зиготена
Происходит начало синапсисиса - спаривание гомологичных хромосмом с образованием бивалента, или синаптонемального комплекса, в котором хромосомы выровнены и соединены.
Во время зиготены образуется zDNA составляющая 0,3, 0,4% от всей ДНК. zDNA GC-обогащена и находится в блоках длиной 104 пн разбросанных вдоль хромосом. Добавление ингибиторов синтеза ДНК в зиготене, предотвращают синапсис.

Пахитена
Хромосомы конденсируются
Синаптонемальный комплекс
Мейоз проходит и в отсутствии синаптонемального комплекса, но без рекомбинации.

Диплотена

Диакинез

МЕТАФАЗА I

АНАФАЗА I

ТЕЛОФАЗА I

ИНТЕРКИНЕЗ

ПРОФАЗА II
МЕТАФАЗА II
АНАФАЗА II
ТЕЛОФАЗА II

ГАМЕТОГЕНЕЗ

СИНАПСИС

КРОССИНГОВЕР

Alberts, 2003

Alberts, 2003

Alberts,2003

Митоз

2n-->S-->4n-->2x2n

ПРОФАЗА.
В профазе происходят следующие события: конденсация хромосом, формирование веретена деления, распад ядрышек, эндоплазматического ретикулума (ЭР), цитоплазматических микротрубочек, снижается и прекращается синтез РНК.
Каждая хромосома двойная (2x2n), они тесно соприкасаются и спирализуются одна относительно другой.
Конденсация хроматина.
После S-фазы сестринские хроматиды остаются связаны мультибелковым комплексом когезинов располагающимся вдоль хроматид в процессе их удвоения. Когезины удерживают хроматиды вместе вплоть до их расхождения в анафазе.
Первый признак Митоза – конденсация хромосом (у человека в 50 раз). Конденсины – белки участвующие в конденсации. Запуск M-Cdk фосфорилирования конденсинов отвечает за их сборку в комплексы на ДНК и конденсации хромосом. При конденсации затрачивается энергия АТФ. Хромосомы конденсируются вокруг продольной центральной оси хромосомы на которой наблюдается наибольшая концентрация конденсинов. В фиксированных препаратах наблюдается сначала спиральная укладка конденсинов вдоль хромосомы (рис.1 )

рис.1 Спиральная укладка хроматид - окраска на специфические белки показывает их спиральное расположение в хромосомах.

Конденсины и когезины структурно родственны и работают по одинаковым механизмам. Установлено, что если после S-фазы соединение хроматид не наступило правильно, то конденсация также не наступает.
Конденсины (когезины) образуют димеры антипараллельно направленные на концах которых находятся ДНК- и АТФ-связывающие домены, а на середине гибкий шарнир (рис.2).

рис.2

Когезины связывают хромосомы еще в S-фазе.
Cohesin is a four-subunit protein complex, in which a heterodimer of SMC proteins, in this case SMC1/SMC3, associates with two other proteins, the Scc1/RAD21/Mcd1 and Scc3 proteins. In vertebrates there are two variants of Scc3, called SA1 and SA2.(Jessberger 2005)
SMC (The structural maintenance of chromosomes proteins) обнаружены в бактериях и археях. В отличии от эукариотических, представляют гомодимеры, кодируемые одним геном.

рис.3 Structure of cohesin and a possible mechanism by which it might hold sister chromatids together. (A) Smc1 (red) and Smc3 (blue) form intramolecular antiparallel coiled coils, which are organized by hinge or junction domains (triangles). Smc1/3 heterodimers are formed through heterotypic interactions between the Smc1 and Smc3 junction domains. The COOH terminus of Scc1 (green) binds to Smc1's ABC-like ATPase head, whereas its NH2 terminus binds to Smc3's head, creating a closed ring. Scc3 (yellow) binds to Scc1's COOH-terminal half and does not make any direct stable contact with the Smc1/3 heterodimer. Scc1's separase cleavage sites are marked by arrows. Cleavage at either site is sufficient to destroy cohesion. By analogy with bacterial SMC proteins, it is expected that ATP binds both the Smc1 and Smc3 heads, alters their conformation, and possibly brings them into close proximity. By altering Scc1's association with Smc heads, ATP binding and/or hydrolysis could have a role in opening and/or closing cohesin's ring. (B) Cohesin could hold sister DNA molecules together by trapping them both within the same ring. Cleavage of Scc1 by separase would open the ring, destroy coentrapment of sister DNAs, and cause dissociation of cohesin from chromatin. (C) Smc-containing complexes other than cohesin could also function via chromatid entrapment. Condensin, for example (black), could organize mitotic chromosomes by trapping supercoils. It and/or other related complexes could hold distant loci together (arrow) and thereby facilitate the function of long-range enhancers and silencers of transcription.

Образование веретена деления
В микротрубочках веретена ~10^8 молекул тубулина. Веретено нормально функционирует при разрушении центриолей лазером. Центром организации микротрубочек служит аморфное вещество центросомы.
Микротрубочки растут от центросом, белки диненины связывают перекрывающиеся микротрубочки, которые продолжают расти и расталкиваются кинезинами, при этом полюса расходятся. В это время микротрубочки с кинетохором не связываются.
Число микротрубочек прикрепленных к кинетохорам различно у разных видов – у некоторых грибов – 1микротрубочка, у человека - 20-40.
Остаточное тельце – фрагменты полюсных микротрубочек+плотный матрикс.
После начала митоза центросомы расходятся и каждая образует радиально симметричный центр организации микротрубочек (астра). Центросома расположена у ядра. Две астры двигаются к противоположным сторонам ядра для формирования двух полюсов веретена деления. Когда ядерная оболочка разрушается (прометафаза) веретено захватывает хромосомы. В клетках эмбрионов Xenopus центросома удваивается даже если ядро было передвинуто, или репликация ДНК подавлена. Центросомный цикл продолжается почти нормально: сначала 2, потом 4, 8 центросом и т.д. На ооцитах Xenopus было показано, что G1/S-Cdk (комплекс cyclin E и Cdk2) инициирует ДНК репликацию в S фазе также стимулирует удвоение центросомы, это предположительно объясняет почему удвоение центросом происходит в начале S-фазы
Рост веретена зависит от моторных белков принадлежащих к двум семействам – kinesin-related proteins движущиеся к ‘+’
концу и денеины, движущиеся к ‘–‘. Три типа микротрубочек наблюдаются в веретене – астральные, кинетохорные, перекрывающиеся-создают правильную структуру веретена. Микротрубочки растут от центросомы вперед ‘+’ концом. Три вида микротрубочек различаются поведением и наборами присоед белков.
Веретено начинает собираться в профазе. M-Cdk запускают фосфорилирование двух типов белков контролирующих динамику микротрубочек. Типы: моторные белки и microtubule-associated proteins (MAPs). Также имеются белки катастрофины.
В интерфазе микротрубочки отходят от одной центросомы и находятся в динамическом равновесии. Переключение ведущее к росту называется спасение, переключение к уменьшению микротрубочек – катастрофа. В профазе длинные интерфазные микротрубочки быстро преобразуются в множество коротких окружающих каждую центросому, которые начинают формировать веретено деления.

РАСПАД ЭР
ЭР распадается на мелкие вакуоли, лежащие по переферии клетки и Аппарата Гольджи (АГ), который теряет околоядерную локализацию, разделяется на отдельные диктиосомы разбросанные в цитоплазме.

ПРОМЕТАФАЗА
Распад ядерной оболочки, беспорядочное движение хромосом в области бывшего ядра, хромосомы через кинетохор соединяются с веретеном и начинают движение.

Распад ядерной оболочки

Кинетохор
Sc: кинетохор связан с цетромерным локусом CEN: CDEI,II,III. CDEI,III – консервативные районы сходны с Dm. CDEII – обогащен АТ, участок разной длины. CDE ответственен за связь с мт, взаимодействует с рядом белков.
кинетохор – мультибелковый комплекс, состоит из трех слоев:
наружный – плотный (СENP-E, СENP-F – участвуют в связывании мт), от него отходит множество фибрилл – фиброзная корона кинетохора (СENP-E, динеины)
средний – рыхлый, 3F3/2 – белок, регистрирует натяжение пучков мт
внутренний – плотный, участок ГХ обогащенный а-сателлитной ДНК (СENP-B- связывается с а-ДНК, MCAK-кинезинподобный белок-когезин, INCENP-когезин, СENP-А-аналог H3, СENP-G-связывается с белками ядерного матрикса, СENP-С-ф-ция не выяснена)
Функция кинетохора: связывание хроматид, закрепление мт веретена.
min число мт у Sc 1 на хромосому, у высших растений 20-40 мт на хромосому
белки кинетохора присутствуют во всех стадиях кц, образование и деление кх происх в S-периоде
Х-мы беспорядочно движутся – метакинез – то приближаются к полюсам, то удаляются к центру веретена, пока не займкт среднее положение – конгрессия х-м. мт случайно захватываются кинетохором и х-мы скользят по мт к полюсу 25мкм/мин, с помощью аналога динеина. Во время движения мт не разбираются. Хроматиды связаны и тянутся с двух сторон. Если лазером перерезать мт с одной стороны, то х-мы утянуться к противоположному полюсу
Перемещение хромосом к экватору
если митотич кл обработать D2O или таксолом – подавляют разборку мт?мт удлиняются и не тянут хромосомы?блок митоз
колхицин, низкая t, высокое гидростатич давление – разрушение нитей веретена?блок митоз
сила действующая на кинетохорную нить тем слабее чем ближе к полюсу нах кинетохор

МЕТАФАЗА
Завершается формирование веретена деления, хромосомы перестают двигаться и выстраиваются по экватору веретена (экваториальная пластинка)
метафаза - синтез белка – 20-30% от интерфазы. Клетки наиболее чувствительны к холоду, колхицину и др. агентам, которые разрушают веретено деления и приводят к прекращению митоза (К-митоз), при малых дозах митоз восстанавливается через несколько часов (иначе гибель либо полиплоидия).
Метафаза – хромосомы образуют пластинку, микротрубочки достигают max концентрации и перекрываются.

АНАФАЗА
Анафаза – хромосомы внезапно одновременно отделяются друг от друга и начинают движение к полюсам. Центромеры разъединяются – деградация центромерных когезинов. Наиболее короткая стадия, разделение хроматид и расхождение хромосом к полюсам (v=0,2-5 мкм/мин). Иногда также расходятся полюса друг от друга.
Расхождение хромосом за счет кинетохорных пучков микротрубочек – анафаза А, расхождение хромосом вместе с полюсами за счет удлинения межполюсных микротрубочек – анафаза В.
Разделение хроматид и движение к полюсам.
Веретено и перетяжка связаны так, что пока хромосомы не разойдутся перетяжка цитоплазмы не наступает.
События анафазы: движение кинетохорных нитей к полюсам, движение полюсных нитей расталкивающих полюсы-движутся друг относительно друга; малые дозы хлоралгидрата предотвращают удлинение и движение полюсных нитей, но не влияют на кинетохорную нить.

ТЕЛОФАЗА.
Телофаза длится с момента прекращения движения хромосом. Происходит реконструкция ядер - образование ядерной оболочки, деспирализация хромосом, активация хромосом - увеличение уровня транскрипции, формирование ядрышек, разрушение веретена деления, разделение клеток, образование остаточного тельца Флеминга, образование перетяжки.
В местах контактов хромосом с мембранными пузырьками начинает образовываться ядерная оболочка. Сначала она образуется на латеральных поверхностях хромосом, затем в центромерных и теломерных участках. После смыкания ядерной оболочки происходит образование ядрышек.
Разборка микротрубочек идет от полюсов к экватору бывшей клетки, в средней части веретена микротрубочки сохраняются дольше всего – остаточное тельце.
Цитокинез.
Борозда деления образуется в плоскости метафазной пластинки под прямым углом к длинной оси митотического веретена. Перетяжка содержит актиновые филаменты и миозин II, расположенные по экватору делящейся клетки под плазматической мембраной (ПМ) стягивая ее изнутри.
Одной из причин почему цитокинез не происходит раньше окончания митоза является активность M-Cdk инактивируемой в конце митоза.

ИНТЕРФАЗА.

Основные сведения