Диминуция хроматина

Диминуция хроматина (лат. diminutio или deminutio уменьшение, сокращение) - явление дифференцировки клеток зародышевого пути и сомы, связанные с потерей части генетического материала в раннем эмбриональном развитии. Наблюдается у некоторых видов аскарид, циклопов, инфузорий, клещей, жуков, бабочек, мух и рыб.

Немного истории

Теодор Бовери

В первые явление диминуции было открыто немецким цитологом Теодором Бовери (1862 - 1915) в 1887 году. Он обнаружил, что в раннем развитии у некоторых видов аскарид будущие тканевые (соматические) клетки теряют часть хромосомного материала — хроматина. Решающий вклад в открытие и детальное изучение диминуции хроматина у простейших внес Д.Прескотт. В начале 70-х годов прошлого века американский ученый выявил этот феномен у брюхоресничных инфузорий при созревании вегетативных (т.е. выполняющих соматические функции) ядер - макронуклеусов. В середине 60-х годов изучением диминуции хроматина у циклопов занималась С.Берман. Немецкая исследовательница обратила внимание на то, что число хромосом у тех трех видов циклопов, с которыми она работала, было одинаковым как до диминуции, так и после нее. Конечно, за счет этого события размеры хромосом уменьшались в зависимости от доли потерянной ДНК. Берман предложила молекулярную модель диминуции: избыточная ДНК выводится из хромосом подобно тому, как профаг исключается из хромосом лизогенных бактерий, т.е. путем выпетливания и внутрихроматидной рекомбинации с образованием колец из ДНК. Кольца Берман и обнаружила при электронно-микроскопическом исследовании разрушенных клеток циклопов в стадии диминуции. К сожалению, работы Берман прервались в 1984 г.

Парадокс генома высших эукариот

В середине XX века, так же как и во времена Ч. Дарвина во всех школьных учебниках по биологии схематически изображалось развитие жизни на Земле в виде эволюционного древа. В его основании находились простые и, как думали, самые древние организмы, а на вершине непременно располагался человек. Поэтому была вполне естественной точка зрения, согласно которой у Homo sapiens должно быть наибольшее число генов, т.е. и количество ДНК. Однако в 1952 году американские биохимик А.Мирский и цитолог Х.Рис доказали, что нет прямой зависимости между сложностью организации вида животных и количеством генетического материала, которым он обладает. В настоящее время расшифрованы полные геномы (т.е. нуклеотидные последовательности ядерной ДНК) нескольких организмов, в том числе, разумеется, и человека. Оказалось, что в сумме его гены вместе с регуляторными участками едва ли превышают 3-5% всего генома. О назначении остальной ДНК сегодня мы фактически ничего не знаем и не понимаем ни ее эволюционной роли, ни механизма происхождения.

Диминуция у инфузории

Taxonavigation Superregnum: Eukaryota Regnum: Protista Phylum: Ciliophora

Инфузория Tetrahymena thermophila — модельный объект для изучения одноклеточных эукариот (фото с сайта mcdb.colorado.edu)Инфузория Tetrahymena thermophila — модельный объект для изучения одноклеточных эукариот (фото с сайта ]]>mcdb.colorado.edu]]>)

При созревании Ма (макронуклеуса) происходит диминуция хроматина, об этом свидетельствует тот факт, что геном Ма брюхоресничных инфузорий гипотрихид родов Stylonychia, Euplotes и Oxytricha содержат лишь 2-4% нуклеотидных последовательностей генома Ми (микронуклеус) генеративного ядра, аналога зародышевой линии (germ line) многоклеточных. Следовательно 96-98% генома теряются при созревании Ма. Процесс диминуции характерен для всех представителей родов Tetrahymena, Paramecium (класс Oligohymenophorea), Stylonychia, Euplotes и Oxytricha (класс Spirotrichea). Из всех инфузорий наиболее кардинальный процесс реорганизации ядерного материала в онтогенезе можно наблюдать у гипотрихид. При созревании Ма диминуция происходит дважды. Первый раз удаляются целые хромосомы: через 10-15 часов после расхождения коньюгантов у Stylonychia lemnae примерно 140 хромосом становятся более компактными, перемещаются к внутренней мембране оболочки язра и затем дегенерируют. Оставшиеся 35-36 хромосом постепенно политенизируются, и еще через сутки начинается внутрихромосомная элиминация ДНК. Происходит она следующим образом: диски политенных хромосом поодиночке или небольшими группами окружаются мембраноподобным материалом, образуя пузырьки. Вся политенная хромосома распадается на множество независимых пузырьков, в которых лизируется удаляемая ДНК: элиминируется большая часть высокоповторенных последовательностей, спейсеры (межгенные промежутки), мобильные элементы генома, а так же внутренние элиминируемые последовательности (ВЭП). Все изученные до сих пор гены, а их более 20, содержат ВЭП. В целом их число в Ми составляет несколько десятков тысяч. ВЭП имеют на флангах короткие повторы (2-19 пн), при участии которых, возможно, и происходит сплайсинг кодирующих последовательностей ДНК Ма. Остаются только генетически значимые последовательности, к ним с обоих концов присоединяется теломерная ДНК, затем оболочки пузырьков распадаются и Ма превращается в "мешок с генами". В то же время происходит процессинг ДНК. В результате двух актов диминуции только 2 % последовательностей ДНК, имеющихся в Ми, остается в зрелом Ма.

Диминуция у аскарид

Наиболее подробно ДХ (диминуция хроматина) изучена у Parascaris univalens и Ascaris suum. ДХ у Parascaris univalens происходит последовательно в клетках соматической линии со второго по шестое деления дробления. Зигота содержит две хромосомы , в каждой из которых можно выделить тонкий прицентромерный и утолщенные концевые районы. В 1887 году Бовери обнаружил, что уже во время второго деления дробления в одной из клеток P. Univalens утолщенные концы хромосом отделяются от средней части и, не имея центромер, остаются в районе экватора, где дегенерируют. В результате утрачивается существенная часть хромосом. Клетка, прошедшая диминуцию, дает начало клону клеток, имеющих значительно укороченные хромосомы. Что касается второй дочерней клетки, в ней диминуция не происходит и она дает начало двум новым клеткам, одна из которых опять подвергнется диминуции, а другая нет. В результате получается эмбрион, состоящий из 32 клеток, в которых только две имеют полный набор последовательностей ДНК. Из них затем формируются клетки зародышевого пути, а из оставшихся 30 развиваются соматические клетки.
Показано, что экспозиция развивающихся эмбрионов Parascaris univalens в хлористом литии приводит к инициации диминуционных процессов во всех бластомерах у части зародышей, изменяя поведение бластомеров зародышевой линии и вызывая у них сходство с соматическими бластомерами в том, что касается схемы деления, ориентации митотического веретена деления и синхронизации клеточных делений. Высказано предположение, что экспозиция в хлористом литии зародышей P. univalens инактивирует цитоплазматические факторы, которые предотвращают ДХ в бластомерах, дающих в конечном итоге линию клеток зародышевого пути. Интересна также закономерность, которую наблюдали эти же авторы: хлористый литий индуцировал ДХ в клетках зародышевой линии с 1-го по 4-е деления дробления, но не после 4-го деления. Эта особенность поведения клеток зародышевой линии после 4-го деления дробления строго детерминирована и показывает, что развитие клеток зародышевого пути, начиная с этого этапа, не может быть изменено на направление, сходное с развитием соматических бластомеров. Аналогичным действием на зародыши P. univalens обладает цитохалазин-В. Эмбрионы, обработанные цитохалазином-В, осуществляют только симметричные деления, похожие на деления соматических клеток, и все бластомеры дробящегося яйца подвергаются ДХ. Вероятно, данные по влиянию цитохалазина-В на эмбриогенез P. univalens указывают, что распределение цитоплазматических факторов, определяющих ход ДХ, зависит от целостности микрофиламентов.
Исследование не обработанных какими-либо агентами, эмбрионов P. univalens, при использовании антитела anti-myosin II, обнаружило различное распределение миозина между пресоматическими бластомерами и бластомерами-родоначальниками зародышевого пути. Учитывая тот факт, что актин и миозин участвуют в переносе некоторого количества РНК, а также данные, согласно которым белки цитоскелета, особенно актин, отвечают за закрепление локализованной мРНК, была высказана гипотеза, из которой следует, что микрофиламенты, связанные с мРНК, транспортируют и/или закрепляют определенные цитоплазматические факторы, вызывающие ДХ в течение раннего развития эмбрионов Parascaris.
Противоположное действие по отношению к хлористому литию и цитохалазину-В оказывает NaSCN. У эмбрионов, выдержанных в растворе этой соли со стадии зиготы до 4–клеточной стадии, появляются многоядерные эмбрионы, в которых не проходят диминуционные деления, а анализ веретена деления обнаруживает множественные полюса и очевидный недостаток микротрубочек. Высказывается предположение, что действие NaSCN состоит в процессе денатурации фибриллярных белков, но не в специфическом влиянии на ДХ.

Диминуция у циклопов

Кроме аскарид ДХ происходить и у некоторых видов циклопов. Она происходит во время 4-7 деления дробления (у разных видов). Хроматин элиминируется из различных участков хромосом: терминальных гетеропикнотических фрагментов у Сyclops Divulus, C.furcifer, или из интеркалярных - у C.strenuus. Элиминируемый хроматин остается в виде крупных блоков или гранул в экваториальной части веретен деления.
В работах А.П. Акифьева и А.К. Гришанина наиболее полно описан процесс ДХ у C.kolensis. Диминуция у этого вида происходит во время 4-го деления дробления в 6 клетках зародыша из 8 и характеризуется тем, что в конце значительно удлененной интерфазы в ядрах этих шести клеток поялвяются мелкие фельгенположительные гранулы или капли (около 600 в каждой клетке). Гранулы имеют диаметр порядка 0,5-3,5 мкм. По мере наступления профазы и следующих стадий диминуционного деления хроматиновые гранулы сливаются, вокруг них формируется плотная однослойная, лишенная пор мембрана толщиной около 50 нм. Лизис элиминируемой ДНК (эДНК) происходит, вероятно, внутри этих гранул. эДНК представляет собой циклические структуры, поэтому если бы мембрана имела поры, то внутрь гранул с началом телофазы мог бы свободно поступать фактор(ы) декомпактизации. В таком случае гранулы с эДНК превратились бы в обычные микроядра, которые в сумме содержали бы большую часть генетического материала клетки. Уникальная мембрана гранул обеспечивает надежную изоляцию материала, подлежащего лизису, и таким образом предотвращает возникновение хаоса в постдиминуционных клетках.
Продолжительность интерфазы перед диминуцией значительно увеличивается, после вновь укорачивается. у C.kolensis удаляется до 94% генома зародышевых клеток. В ходе диминуции число хромосом остается неизменным, однако их размеры резко уменьшаются (у C.kolensis c 11-20 до 2,6 мкм, а диаметр - с 1 до 0,5 мкм).

В заключении

К сожалению, диминуция хроматина пока слабо изучена методами молекулярной биологии. Вот почему полное описание всех ее этапов затруднено. Тем не менее с достаточной уверенностью можно говорить о следующих событиях,

1. «Принятие» клеткой программы диминуции хроматина. Отнюдь не случайно у циклопов промежутки до и после диминуционного деления в восемь-девять раз короче, чем предшествующий период.

2. Маркировка последовательностей ДНК, которые должны быть элиминированы, с одной стороны, и которые подлежат сохранению — с другой. Сотни и даже тысячи участков, в которых происходит диминуция хроматина в хромосомах, должны быть приведены в состояние готовности к диминуции одновременно.

3. Разрезание ДНК в маркированных участках.

4. Сшивание неэлиминируемой ДНК в «мини-хромосомы».

5. Образование уникальной по своей структуре мембраны, формирующей гранулу, в которую, как в консервную банку, заключена элиминируемая ДНК (впервые процесс описан А. К. Гришаниным).

6. Деградация ДНК внутри этих гранул.

Литература: 
  1. И. Ф. Жимулев "Общая и молекулярная генетика"
  2. А. К. Гришанин, А. П. Акифьев, А. К. Шеховцов, И. Ф. Жимулев, Т. В. Бойкова "Проблема диминуции хроматина на рубеже ХХ и ХХI веков"
  3. А. П. Акифьев "Острова в океане, или парадоксы эволюции генома"
  4. А. П. Акифьев "Избыточная ДНК - генетическая квадратура круга?"
  5. Т. В. Бойкова "Структура ДНК, элиминируемой в ходе диминуции хроматина у Cyclops Kolensis (Crustacea: Copepoda)"
  6. ]]>http://www.wikipedia.org]]>