Геном пластид

Подобно митохондриям, хлоропласты имеют собственную генетическую систему, обеспечивающую синтез ряда белков внутри самих пластид. В матриксе хлоропластов обнаруживаются ДНК, разные РНК и рибосомы. Оказалось, что ДНК хлоропластов резко отличается от ДНК ядра. Она представлена циклическими молекулами длиной до 40-60 мкм, имеющими молекулярный вес 0,8-1,3х108 дальтон. В одном хлоропласте может быть множество копий ДНК. Так, в индивидуальном хлоропласте кукурузы присутствует 20-40 копий молекул ДНК. Длительность цикла и скорость репликации ядерной и хлоропластной ДНК, как было показано на клетках зеленых водорослей, не совпадают. ДНК хлоропластов не состоит в комплексе с гистонами. Все эти характеристики ДНК хлоропластов лизки к характеристикам ДНК прокариотических клеток. Более того, сходство ДНК хлоропластов и бактерий подкрепляется еще и тем, что основные регуляторные последовательности транскрипции (промоторы, терминаторы) у них одинаковы. На ДНК хлоропластов синтезируются все виды РНК (информационная, трансферная, рибосомная). ДНК хлоропластов кодирует рРНК, входящую в состав рибосом этих пластид, которые относятся к прокариотическому 70S типу (содержат 16S и 23S рРНК). Рибосомы хлоропластов чувствительны к антибиотику хлорамфениколу, подавляющему синтез белка у прокариотических клеток.
рис.
Образование шпилек в ДНК некоторых хлоропластов.

Так же как в случае хлоропластов мы вновь сталкиваемся с
существованием особой системы синтеза белка, отличной от
таковой в клетке.

Эти открытия вновь пробудили интерес к теории симбиотического
происхождения хлоропластов. Идея о том, что хлоропласты
возникли за счет объединения клеток-гетеротрофов с прокариотическими
синезелеными водорослями, высказанная на рубеже XIX и XX
вв. (А.С. Фоминцин, К.С.Мережковский) вновь находит свое
подтверждение. В пользу этой теории говорит удивительное
сходство в строении хлоропластов и синезеленых водорослей,
сходство с основными их функциональными особенностями, и
в первую очередь со способностью к фотосинтетическим процессам.


рис. Состав генома пластид у арабидопсиса.

Известны многочисленные факты истинного эндосимбиоза синезеленых
водорослей с клетками низших растений и простейших, где
они функционируют и снабжают клетку-хозяина продуктами фотосинтеза.
Оказалось, что выделенные хлоропласты могут также отбираться
некоторыми клетками и использоваться ими как эндосимбионты.
У многих беспозвоночных (коловратки, моллюски), питающихся
высшими водорослями, которые они переваривают, интактные
хлоропласты оказываются внутри клеток пищеварительных желез.
Так, у некоторых растительноядных моллюсков в клетках найдены
интактные хлоропласты с функционирующими фотосинтетическими
системами, за активностью которых следили по включению С14О2.

Как оказалось, хлоропласты могут быть введены в цитоплазму
клеток культуры фибробластов мыши путем пиноцитоза. Однако
они не подвергались атаке гидролаз. Такие клетки, включившие
зеленые хлоропласты, могли делиться в течение пяти генераций,
а хлоропласты при этом оставались интактными и проводили
фотосинтетические реакции. Были предприняты попытки культивировать
хлоропласты в искусственных средах: хлоропласты могли фотосинтезировать,
в них шел синтез РНК, они оставались интактными 100 ч, у
них даже в течение 24 ч наблюдались деления. Но затем происходило
падение активности хлоропластов, и они погибали.

Эти наблюдения и целый ряд биохимических работ показали,
что те черты автономии, которыми обладают хлоропласты, еще
недостаточны для длительного поддержания их функций и тем
более для их воспроизведения.

В последнее время удалось полностью расшифровать всю последовательность
нуклеотидов в составе циклической молекулы ДНК хлоропластов
высших растений. Эта ДНК может кодировать до 120 генов,
среди них: гены 4 рибосомных РНК, 20 рибосомных белков хлоропластов,
гены некоторых субъединиц РНК-полимеразы хлоропластов, несколько
белков I и II фотосистем, 9 из 12 субъединиц АТФ-синтетазы,
части белков комплексов цепи переноса электронов, одной
из субъединиц рибулозодифосфат-карбоксилазы (ключевой фермент
связывания СО2), 30 молекул тРНК и еще 40 пока неизвестных
белков. Интересно, что сходный набор генов в ДНК хлоропластов
обнаружен у таких далеко отстоящих представителей высших
растений как табак и печеночный мох.

Основная же масса белков хлоропластов контролируется ядерным
геномом. Оказалось, что ряд важнейших белков, ферментов,
а соответственно и метаболические процессы хлоропластов
находятся под генетическим контролем ядра. Так, клеточное
ядро контролирует отдельные этапы синтеза хлорофилла, каротиноидов,
липидов, крахмала. Под ядерным контролем находятся многие
энзимы темновой стадии фотосинтеза и другие ферменты, в
том числе некоторые компоненты цепи транспорта электронов.
Ядерные гены кодируют ДНК-полимеразу и аминоацил-тРНК-синтетазу
хлоропластов. Под контролем ядерных генов находится большая
часть рибосомных белков. Все эти данные заставляют говорить
о хлоропластах, так же как и о митохондриях, как о структурах
с ограниченной автономией.

Транспорт белков из цитоплазмы в пластиды происходит в принципе
сходно с таковым у митохондрий. Здесь также в местах сближения
внешней и внутренней мембран хлоропласта располагаются каналообразующие
интегральные белки, которые узнают сигнальные последовательности
хлоропластных белков, синтезированных в цитоплазме, и транспортируют
их в матрикс-строму. Из стромы импортируемые белки согласно
дополнительным сигнальным последовательностям могут включаться
в мембраны пластиды (тилакоиды, ламеллы стромы, внешняя
и внутренняя мембраны) или локализоваться в строме, входя
в состав рибосом, ферментных комплексов цикла Кальвина и
др.

Удивительное сходство структуры и энергетических процессов
у бактерий и митохондрий, с одной стороны, и у синезеленых
водорослей и хлоропластов – с другой, служит веским аргументом
в пользу теории симбиотического происхождения этих органелл.
Согласно этой теории, возникновение эукариотической клетки
прошло через несколько этапов симбиоза с другими клетками.
На первой стадии клетки типа анаэробных гетеротрофных бактерий
включили в себя аэробные бактерии, превратившиеся в митохондрии.
Параллельно этому в клетке-хозяине прокариотический генофор
формируется в обособленное от цитоплазмы ядро. Так могли
возникнуть гетеротрофные эукариотические клетки. Повторные
эндосимбиотические взаимоотношения между первичными эукариотическими
клетками и синезелеными водорослями привели к появлению
в них структур типа хлоропластов, позволяющих клеткам осуществлять
автосинтетические процессы и не зависеть от наличия органических
субстратов (рис. 236). В процессе становления такой составной
живой системы часть генетической информации митохондрий
и пластид могла изменяться, перенестись в ядро. Так, например
две трети из 60 рибосомных белков хлоропластов кодируется
в ядре и синтезируются в цитоплазме, а потом встраивается
в рибосомы хлоропластов, имеющие все свойства прокариотических
рибосом. Такое перемещение большой части прокариотических
генов в ядро привело к тому, что эти клеточные органеллы,
сохранив часть былой автономии, попали под контроль клеточного
ядра, определяющего в большей степени все главные клеточные
функции.